

Glycoinformatics Consortium (GLIC) seminar series

- Glycan Arrays -

CarbArrayART for glycan microarray

Glycosciences Laboratory: glycan probe library

Mammalian-type sequences

N-Glycans

- high mannose
- paucimannose
- complex
- hybrid

O-Glycans

- mucin type
- O-Fucosyl
- O-Mannosyl

Glycolipids

- neutral
- sialylated (e.g. gangliosides)
- sulfated

Glycosaminoglycan oligosaccharides

- hyaluronic acid
- chondroitin sulfates A & C
- dermatan sulfate
- heparin & heparan sulfate

Other oligosaccharides

- A, B & H blood group-related
- Lewis antigens a, b, x, y
- other neutral
- sialylated and/or sulfated
- other acidic

Exogenous sequences from fungal, bacterial and plant polysaccharides

Oligosaccharides derived from fungal, bacterial and plant polysaccharides

- glucan
- chitin and chitosan
- polysialic acids
- mannan, xylan and arabinan

Over 900 Lipid-linked glycan probes derived from natural sources or chemically synthesized

https://glycosciences.med.ic.ac.uk/glycanLibraryIndex.html

- Tang PW, Gooi HC, Hardy M, Lee YC, Feizi T. Biochem Biophys Res Commun 1985, 132: 474-480.
- Fukui S, Feizi T, Galustian C, Lawson AM, Chai W. Nat Biotechnol 2002, 20: 1011-1017.

- Feizi T, Chai W. Nat Rev Mol Cell Biol 2004, 5: 582-588.
- Liu Y, Palma AS, Feizi T. Biol Chem 2009, 390: 647-656.

Glycan microarray slides generated in the Glycosciences Laboratory

Comprehensive screening oligosaccharide microarrays

Each coloured box contains < 64 alycan probes arrayed

Focused arrays for specific projects

Glucan oligosaccharides

glucan-binding receptors antibodies

carbohydrate binding modules (CBMs)

Sialyl oligosaccharides influenza viruses and other sialic acid-binding proteins

Ganglioside-related polyomaviruses

Glycosaminoglycan chains

GAG-binding proteins and viruses

broadly neutralizing anti-HIV antibodies

Mucins Human microbiota

From their earliest stages glycan microarrays signalled the need for a processing software

Software Tools for Storing, Processing and Displaying Carbohydrate Microarray Data

Mark Stoll and Ten Feizi

Proceeding of the Beilstein Symposium on Glyco-Bioinformatics, 123-140 (2009)

Glycan microarray data

Software tools are based on Microsoft Office and Visual Basic

Limited extensibility

Hence, the need to develop a robust and distributable glycan array software,

Carbohydrate micro-Array Analysis and Reporting Tool

Y Akune, S Arpinar, LM Silva, AS Palma, V Tajadura-Ortega, KF Aoki-Kinoshita, R Ranzinger, Y Liu, T Feizi. Glycobiology, 32(7), 552-555 (2022).

Plugin of GRITS Toolbox

Collaboration with René Ranzinger and Sena Arpinar at Complex Carbohydrate Research Center Stand-alone Java application / Available in multiple platforms / Plugins and modules

Weatherly, D. B., Arpinar, F. S., Porterfield, M., Tiemeyer, M., York, W. S., & Ranzinger, R. (2019). Glycobiology, 29(6), 452-460.

CarbArrayART webpage

http://carbarrayart.org

Welcome to CarbArrayART

Carbohydrate microArray Analysis and Reporting Tool (CarbArrayART) is a software tool for glycan microarray experimental design, data storage, processing, presentation and reporting. CarbArrayART capitalizes on GRITS Toolbox which was originally developed for processing, interpreting and archiving glycomic mass spectrometry data. CarbArrayART utilizes the functionalities provided by GRITS Toolbox for storing glycan microarray realated information including glycan structures and metadata such as project information, sample description and experimental details.

The main features of CarbArrayART are:

- 1. Storage of carbohydrate microarray related data including glycan probe lists, array geometry, information on glycan-binding samples and experimental protocols and scan data.
- 2. Presentation of data as tables, charts and matrices (heatmaps) with filtering and sorting of glycans as needed.
- 3. Reporting of microarray data in Word, PDF and Excel formats, together with metadata that are compliant with MIRAGE (Minimum Information Required for a Glycomics Experiment).

You will be referred to Manual and Support page for the installation and step-by-step operation.

About	Highlights	Manual and Support	Download
(i)	Firefox		+

Minimum information to have in hand

Glycan probe	Glycan library (the list of glyco-probes) included in the array Glycan sequence information would be required in order to use the sequence-based filtering and sorting functions in Tabulation View. GlycoCT{condensed}, 2D TEXT, CFG- IUPAC, Glyco Workbench Sequence (GWS) and WURCS formats can be used for entering glycan sequences.	Slide layout Examples illustrated are of the layout of array(s) on a microarray slide: single array/slide or 2x8 subarrays/slide or 4x4 subarray/slide) Single 2x8 4x4
Subarray layout	Layout of printed spots associated with glyco-probe IDs and concentrations (or doses) and the number of replicates in each Subarray (block or pad).	
	glyco-probes at 2 doses (2 and 5 fmol) printed in	Project User-defined name for the project
	a single dose or concentration and 6 replicates.	Analyte Name of the carbohydrate-binding sample
	16x16 12x18	Glycan array data Quantified array data in the form of a gpr file (GenePix scanner) or an Excel file (Proscan)

Imperial College London

The data management workflow of a microarray analysis

The data management workflow in CarbArrayART (left, yellow background)

The experiment workflow (right)

Highlights are:

- MIRAGE^{*} compliant with respect to data input and output
- Data storage and management
- Data presentation
- Data sharing and publication

1. Glycan Glyco-probe entry tool

Tag section

- Name
- Sequence (text)
- Nature (natural, synthesized or unknown)

Tag Name		
Structure if known	~ ~	
Tag Nature	~	
Comment		

1. Glycan Glyco-probe entry tool

Glycan section

- Name
- Sequence

Sequence formats:

- GlyTouCan ID
- GlycoCT{condensed}
- 2D TEXT
- CFG-IUPAC
- Glyco Workbench Sequence (GWS)
- WURCS

	Enter another glycan mojety information	
	Enter another giycan molecy monnation	_
Select from library		Se
Or enter new glycan	Create a new glycan (copy the selected glyc	an)
Glycan name	1	
		~
Sequence		
		~

Tools in CarbArrayART

2. Block layout entry tool: example layout

Ganglioside dose response set

The set has **28** glycan probes with:

- 4 levels (0.3, 0.8, 1.7 and 5 fmol)
- Duplicate spots
 - 0.3 fmol/spot
 - 0.8 fmol/spot
 - 1.7 fmol/spot
 - 5 fmol/spot

O Empty

- Number of Spot Columns = **16**
- Number of Spot Row = **16**

🚸 Subarray Layout Tool	— 🗆 X
Enter information about a glycan microarray su	barray layout
Subarray Layout ID 1	
Name* G	anglioside dose response set
Comment	
Number of replicates (option) Number of levels (arrayed glyco-probe)* Number of glyco-probes*	2 4 28
Subarray geometry (the number of spots)*	
Co	lumn 16
Ro	w 16
< Back Next	> Finish Cancel

Library of pre-saved glycan probes using Glycan Probe Entry Tool

Va	alue	Unit	,	<u>^</u>					
1 0.0	0	fmol/spot							
2 0.0	0	fmol/spot							
3 0.0	0	fmol/spot							
	٥	fmol/coot		v					
Glyco-j	probe list	:				Subarray	y/Block lay	out	
Search	by:		(Name					
	-								
					Search				
					Search				
ID	Glyc	o-probe			Search	Row	Con	Glyco-probe	
ID 1	Glyc GM4	o-probe -Cer			Search	Row 1	Con	Glyco-probe	
ID 1 2	Glyco GM4 GSC-	o-probe -Cer 230-Cer36			Search	Row 1 1	Con	Glyco-probe	
ID 1 2 3	Glyco GM4 GSC- GM3	o-probe -Cer 230-Cer36 -Cer			Search	Row 1 1 1	Con 1 2 3	Glyco-probe	
ID 1 2 3 4	Glyc GM4 GSC- GM3 GM3	o-probe -Cer 230-Cer36 -Cer (Gc)-Cer			Search	Row 1 1 1 1 1	Con 1 2 3 4	Glyco-probe	
ID 1 2 3 4 5	Glyco GM4 GSC- GM3 GM3 GD3-	o-probe -Cer 230-Cer36 -Cer (Gc)-Cer Cer			Search	Row 1 1 1 1 1 1	Con 1 2 3 4 5	Glyco-probe	
ID 1 2 3 4 5 6	Glyco GM4 GSC- GM3 GM3 GD3- Asial	o-probe -Cer 230-Cer36 -Cer (Gc)-Cer (Gc)-Cer Cer o-GM2-Cer			Search	Row 1 1 1 1 1 1 1 1	Con 1 2 3 4 5 6	Glyco-probe	
ID 1 2 3 4 5 6 7	Glyco GM4 GSC- GM3 GM3 GD3- Asial GD2-	o-probe -Cer 230-Cer36 -Cer (Gc)-Cer (Gc)-Cer Cer o-GM2-Cer -Cer			Search	Row 1 1 1 1 1 1 1 1 1 1	Con 1 2 3 4 5 6 7	Glyco-probe	

Va	alue	Unit	^							
1 0.0	0	fmol/spot								
2 0.0	0	fmol/spot								
3 0.0	0	fmol/spot								
	0	fmal/coat	¥							
ilyco-j earch	probe list by:		Name) ID Search	Subarray	//Block lay	out			
ID	Glyco	o-probe		^	Row	Con	Glyco-probe	Level	Identiarray	/
ID 1	Glyco GM4-	o-probe ·Cer		^	Row	Con	Glyco-probe	Level 1	Identiarray	,
ID 1 2	Glyco GM4- GSC-	o-probe •Cer 230-Cer36		^	Row 1 1	Con 1 2	Glyco-probe	Level 1 1	Identiarray 1 1	
ID 1 2 3	Glyco GM4- GSC- GM3-	o-probe ·Cer 230-Cer36 ·Cer		^	Row 1 1 1	Con 1 2 3	Glyco-probe	Level 1 1 2	Identiarray 1 1 1	,
ID 1 2 3 4	Glyco GM4- GSC- GM3- GM3- GM3-	o-probe •Cer 230-Cer36 •Cer (Gc)-Cer		^	Row 1 1 1 1	Con 1 2 3 4	Glyco-probe	Level 1 1 2 2	Identiarray 1 1 1 1 1 1	,
ID 1 2 3 4 5	Glyco GM4- GSC- GM3- GM3(GD3-	o-probe •Cer 230-Cer36 •Cer (Gc)-Cer Cer		^	Row 1 1 1 1 1 1	Con 1 2 3 4 5	Glyco-probe	Level 1 1 2 2 3	Identiarray 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ID 1 2 3 4 5 6	Glyco GM4- GSC- GM3- GM3(GD3- Asialo	o-probe Cer 230-Cer36 Cer (Gc)-Cer Cer Cer o-GM2-Cer			Row 1 1 1 1 1 1 1	Con 1 2 3 4 5 6	Glyco-probe	Level 1 1 2 2 2 3 3 3	Identiarray 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
ID 1 2 3 4 5 6 7	Glyco GM4- GSC- GM3- GM3(GD3- Asialo GM2-	o-probe ·Cer 230-Cer36 ·Cer (Gc)-Cer Cer Cer o-GM2-Cer ·Cer			Row 1 1 1 1 1 1 1 1 1	Con 1 2 3 4 5 6 7	Glyco-probe	Level 1 2 2 3 3 3 4	Identiarray 1	

	Arra	ayed glyco	-probe levels								
		Value	Unit	^							
	1	0.0	fmol/spot								
	2	0.0	fmol/spot								
	3	0.0	fmol/spot								
		100	fmol/coot	¥	_ /						
Block layout table:						Subarray	/Block lay	out			
 To define the pri 	inting	locatio	on of each glyc	o-probe) rch						
• The number of r	้าวพร ส	and col	umns of spots	(counting		Row	Con	Glyco-probe	Leve	l Identiarray	^
from the ton-left	t corn			(counting		1	1		1	1	
nom the top-len						1	2		1	1	
• Glyco-probe arra	ayed					1	3		2	1	
	raha		4			1	4		2	1	
 Levels of glyco-p 	robe	arraye	a			1	5		2	1	
 Identification nu 	mber	of glv	co-probes in th	nis subarrav:		1	7		4	1	
The number indi	icates	a grou	ip of glyco-pro	bes.		1	8		4	1	
								< Back	Next >	Finish	Cancel

🕌 Subarr	ay Layout Tool										×												
Fill the ta	bles for subarray layout.							Proce	ssec	l da	ta (a	vera	ge ir	nte	nsity	/ Va	alu	es)	are	calc	cula	ted	
Arrayed	lyco-probe levels							if the	glyc	an p	orob	es in	one	e bl	ock	are	e	-					
Valu 1 0.3	e Unit fmol/spot	^						(1) T	he s	sam	e pro	obe l	D										
2 0.8	fmol/spot									and	d												
3 1.7 fmol/spot V Drag and drop							(2) T	he s	sam	e gro	oup r	num	ber	(ide	enti	ifica	atio	n n	umt	ber)			
Glyco-pr	bbe list			(Block lay	yout					and	d												
Search by	6	Search						(3) t	he s	ame	e lev	el											
ID	Glyco-probe		Row	Column	Lo-pro	be Level Id	entificaito	n numbs	in this	subarr	ay \land]											
1	GM4-Cer		1 1			1 1					V												
2	GSC-230-Cer36		1 2	2		1 1																	
3	GM3-Cer		1 3	3		2 1						-											
4	GM3(Gc)-Cer		1 4	4		2 1					GM4	1							GSC	-230			
5	GD3-Cer		1 5	;		3 1			•	•	GM	2					•	•	GM3		•	•	•
6	Asialo-GM2-Cer		1 6	5		3 1			•	•	•	•	•)			•	•			•	•	•
7	GM2-Cer		1 7	7		4 1					GD3	}						A	Asialo	-GM2			
8	GD2-Cer		1 8	3		4 1			٠	•	•	•	• •				٠	٠	٠	•	•	٠	٠
9	Asialo-GM1-Cer		1 9)		1 2					GM2	2							G	D2			
10	Asialo-GM1-Tetra-DH		1 1	0		1 2			•	Δ	sialo-G	iM1	•				•	Asia	lo-GN	V1-Te	tra	•	•
11	GM1-Cer		1 1	1		2 2			•	•		•	•				•	•	•		•	•	•
12	GM1-penta-DH		1 1	2		2 2																	
13	GM1(Gc)-Cer		1 1	3		3 2																-	22

Tools in CarbArrayART

3. Slide layout entry tool: entry page 1

	Column 1 2
🕼 Array Layout Tool 🛛 🚽 🗆 🗙	Row Ganglioside dose response set
Enter information about the microarray layout Name* Ganglioside dose response set	 Block 1 Block 2 Block 3 Block 4 A set of 16 subarrays Modularized subarray layouts Subarray designated as "ganglioside dose response" is
Comments	 3 5 6 robotically printed on each block A Block Block
Array geometry (the number of subarrays/blocks) column* 2 row* 8	$\begin{array}{c c} 7 & 8 \\ 5 & Block \\ 9 & 10 \\ 6 & Block \\ 11 & Block \\ 11 & Block \\ 12 & 12 \\ 6 & Block \\ 11 & Block \\ 12 & 12 \\ 6 & Block \\ 12 & 12 \\ 6 & Block \\ 12 & Block $
< Back Next > Finish Cancel	7 $\begin{bmatrix} 11 \\ 12 \\ 13 \end{bmatrix} \begin{bmatrix} 12 \\ 14 \\ 14 \end{bmatrix}$ 8 $\begin{bmatrix} Block \\ 15 \end{bmatrix} \begin{bmatrix} Block \\ 16 \end{bmatrix}$

3. Slide layout entry tool: entry page 2

Library of pre-saved subarray layouts

ne new microarray lay	out.				
ID Subarray/bloc	k list]			
1 Ganglioside Do	ose Response Set				
		Arra	ay layo	out	1
			Α	В	
		1			1
		2	45		1
		4	-		1
		5			1
		6			1
		7			1
		8			

Ganglioside dose response set

- A set of 16 subarrays
- Modularized subarray layouts
- <u>Subarray designated as</u> <u>"ganglioside dose response" is</u> robotically printed on each block

Data Entry - Slide layout entry from an Excel file GenePix Array List (GAL) like file

An Excel file contains:

- Block numbers in a slide
- Spot numbers (row and columns) in a block
- Glycan probe information arrayed in the spot

ļ	AutoSave 🤇		୨ ∙ ୯- ୩	} * <i>∓</i>			ArrayGeometry_GAL	extended.xlsx - Excel		
Fi	e Hor	ne Insert	Draw	Page Layout Fo	rmulas Data	Review	View Developer	Help 🔎 Search		
J27	7	• : ×	√ <i>f</i> x							
	А	В	С	D	E		F	G	н	I
1	Block	Spot column number in Block	Spot row number in Block	Glycan probe ID if the glycan is recorded in CarbArrayART (Numbers)	Printed glycan pr (*if the spot is n	obe name ot empty)	Glycan probe printing concentration or dose value (Numbers) (*if the spot is not empty)	Glycan probe concentration or dose unit (Selection) (*if the spot is not empty)	Comments on purity of pritned glycan probe	Other comments on pritned glycan probe
2	1	1	1	1	GM2		0.3	fmol/spot		
3	1	2	1	1	GM2		0.3	fmol/spot		
4	1	3	1	1	GM2		0.8	fmol/spot		
5	1	4	1	1	GM2		0.8	fmol/spot		
6	1	5	1	1	GM2		1.7	fmol/spot		
7	1	6	1	1	GM2		1.7	fmol/spot		
8	1	7	1	1	GM2		5	fmol/spot		

Tools in CarbArrayART

4. Glycan binding sample metadata entry

New: Create a new sample metadata from scratch

Copy component: Copy from the saved sample metadata (parameter values are also copied)

Use Template: Create a new sample metadata using the template (parameter values are empty)

Users can create a new entry using the pre-stored template from pull-down menu.

🕼 New Analyte W	izard				×
Analyte Compone	ent				
Component in An	alyte				
Component Name	BKPyV VP1 WT				
Create Component	- New				\neg
	Copy Component	Component			
		Terrentete	Share Call D	a vice al	
	Cose lemplate	lemplate	Stem Cell D	erived erived	
			Tissue Deriv	ed	
			olycan mici	Ganay	
[< Back Nex	t > Fin	iish	Cance	I

4. Glycan binding sample metadata entry

 Component Info 				+ i b ∠ ×	Tracking				-+ db 🖊 🗙
Descriptor Group / Descriptor	Value	Unit	Guidelines	^	Descriptor Group / Descriptor	Value	Unit	Guidelines	
Sample type			MIRAGE Glycan Microarray	<i>v</i>	Source				
Species				,	▶ Commercial				
Subtype					▶ Collaborator				
Strain					Delivery Date				
▶ Database Entry			MIRAGE Glycan Microarray	v	Dispatch date				
Molecular weight				,					
▶ Antibody									
▶ Tag			MIRAGE Glycan Microarray	Y					
▶Label			MIRAGE Glycan Microarray	/					
Hazardous									
▶ Infectious									
▶ Toxic									
Treated non-hazardous									
▶ Preservative									
Storage condition									
Reference for the sample preparation									
▶ Recombinant									
▶ Natural									
▶ Synthetic									
E Amount				+ 🖞 🖌 🗙	Purity Q.C.				- 🕂 🖞 🗶 🗙
Descriptor Group / Descriptor	Value	Unit	Guidelines		Descriptor Group / Descriptor	Value	Unit	^ Guidelines	
Sample form					▶ Purity, Quantitative			MIRAGE Glycan Microarray	
▶ Solid					▶ Qualitative			MIRAGE Glycan Microarray	
▶ Solution									
► Aliquot									

* Liu, Yan, et al. "The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data." Glycobiology 27.4 (2017): 280-284.

4. Glycan binding sample metadata entry

Component Info		+ d6	<u>/ ×</u>	Tracking				🕂 🗄 🖊 🗙		
Descriptor Group / Descriptor	Value	Unit	Guidelines	^		Descriptor Group / Descriptor	Value	Unit	Guidelines	
Sample type			MIRAGE Glycan Microarray			Source				
Species						▶ Commercial				
Subtype						▶ Collaborator				
Strain						Delivery Date				
Database Entry			MIRAGE Glycan Microarray		۸ d	ofault tomplate ovic	ta in C	orh A ri	av ADT decigned be	ucad an
Molecular weight					AU	erault template exis		didAli	ayaki designed ba	ised on
▶ Antibody						AGE Glycan Microa	rrav G	uidaliu	nec	
▶ Tag			MIRAGE Glycan Microarray				nay U	uiueili	103	
▶ Label			MIRAGE Glycan Microarray							
Hazardous										
▶ Infectious				•	Fou	r sections: (1) Comr	onent	· infor	mation (2) Tracking	v (3) Amount
▶ Toxic					100					5, (5, 7, 1110 and
Treated non-hazardous					and	(4) Purity and Qual	itv cor	ntrol ir	nformation	
▶ Preservative										
Storage condition										
Reference for the sample preparation										
▶ Recombinant				•	Ine	parameters complia	ant wi	th iviii	RAGE guidelines are	e labelled in
▶ Natural					م ما ل		_		-	
▶ Synthetic					the	itere kiekliekted in) 	- · · · · ·		
				•	Ine	item nignlighted in	red is	a unic	que parameter whic	ch can be
					ent	ered once				
E Amount				- 1						
Descriptor Group / Descriptor	Value	Unit	Guidelines			Descriptor Group / Descriptor	Value	Unit	^ Guidelines	
Sample form						▶ Purity, Quantitative			MIRAGE Glycan Microarray	
▶ Solid	Solid					▶ Qualitative			MIRAGE Glycan Microarray	
Solution										
► Aliquot										

* Liu, Yan, et al. "The minimum information required for a glycomics experiment (MIRAGE) project: improving the standards for reporting glycan microarray-based data." Glycobiology 27.4 (2017): 280-284.

4. Glycan binding sample metadata entry: example entry

Descriptor Group / Descriptor	Value	Unit	Guideli
Sample type	Recombinant		MIRAGE
Species	Homo sapiens		
✓ Database Entry			MIRAGE
Database name	Protein Data Bank		MIRAGE
Database URI	https://www.rcsb.org		
ID	4MJ1		MIRAGE
ID URI	https://www.rcsb.org/structure/4		
Molecular weight	151.94	kDa	
∨ Tag			MIRAGE
Name	His-tag (polyhistidine or His6)		MIRAGE
Position	N-terminal		

Tools in CarbArrayART

Protocol and metadata used for a glycan microarray experiment is linked to the *Analyte* (glycan binding sample) information.

<u></u>		×
New Experiment Design		
Sample* BKPyV VP1 WT	Browse	
New Design		
From Template	Fluorescence-labelled protein	~
 Copy existing design 	Fluorescence-labelled protein Biotin-labeled protein Sequential detection (unlabeled) Tagged protein (His, Fc, Flag etc)	ОК

Users can create a new protocol using the template.

There are four pre-stored templates in CarbArrayART as default:

- Fluorescence-labelled sample
- Biotin-labelled sample
- Sequential detection (unlabelled)
- Tagged sample (His, Fc, Flag etc)

Users can create a new protocol using the template.

There are four pre-stored templates in CarbArrayART as default:

- Fluorescence-labelled sample
- Biotin-labelled sample
- Sequential detection (unlabelled)
- Tagged sample (His, Fc, Flag etc)

<Canvas>

Design an experiment workflow by locating boxes and arrows.

A box in the canvas indicates each step (protocol) such as 'Overlay' and 'Washing'.

An arrow indicates the flow of the steps.

<Palette area>

Each box indicates the prestored protocols:

(1) Sample overlay

(2) Fixation

(3) Washing

- (4) Detection reagent
- (5) Drying

(6) Scanning

Users can create a new protocol from scratch by drag-and-drop boxes from the Palette Area and connect them with arrows.

<Parameter area>

The metadata corresponding to the protocol are stored in this section.

Each protocol has a pre-stored metadata list in CarbArrayART based on the MIRAGE Glycan Microarray Guidelines.

The parameters compliant with MIRAGE guidelines are labelled in the 'Guidelines' column.

				<parameter area=""></parameter>
vas Area вкруу урт wt				The metadata corresponding to the protocol are stored in this section.
Wetting & Blocking				Each protocol has a pre-stored metadata list in CarbArrayART based on the MIRAGE Glycan
				The nerometers compliant with
Parameter View				The parameters compliant with
Parameter View	value	unit	guidelines	The parameters compliant with MIRAGE guidelines are labelled in the 'Guidelines' column.
Parameter View name Name	value BKPyV VP1 WT	unit	guidelines MIRAGE Glycan Microarrays	The parameters compliant with MIRAGE guidelines are labelled in the 'Guidelines' column.
Parameter View name Name Sample Concentration	value BKPyV VP1 WT 300	unit ug/ml	guidelines MIRAGE Glycan Microarrays MIRAGE Glycan Microarrays	The parameters compliant with MIRAGE guidelines are labelled in the 'Guidelines' column.
Parameter View name Name Sample Concentration Diluent composition	value BKPyV VP1 WT 300 HBS-Casein/BSA	unit ug/ml	guidelines MIRAGE Glycan Microarrays MIRAGE Glycan Microarrays MIRAGE Glycan Microarrays	The parameters compliant with MIRAGE guidelines are labelled in the 'Guidelines' column.
Parameter View name Name Sample Concentration Diluent composition Volume in the array	value BKPyV VP1 WT 300 HBS-Casein/BSA	unit ug/ml ul/subarray	guidelines MIRAGE Glycan Microarrays MIRAGE Glycan Microarrays MIRAGE Glycan Microarrays	The parameters compliant with MIRAGE guidelines are labelled in the 'Guidelines' column.
Parameter View name Name Sample Concentration Diluent composition Volume in the array Time	value BKPyV VP1 WT 300 HBS-Casein/BSA	unit ug/ml ul/subarray hour	guidelines MIRAGE Glycan Microarrays MIRAGE Glycan Microarrays MIRAGE Glycan Microarrays MIRAGE Glycan Microarrays	The parameters compliant with MIRAGE guidelines are labelled in the 'Guidelines' column.

Dra

Image analysis

Tools in CarbArrayART

6. Data presentation: Create a new Project, Analyte and Glycan Array Data

Create a new Glycan Array Data

6. Data presentation: Glycan Array Data – parameter entry

1	Name:		
2	File Type:	GenePix	~
3	Number of Slides:	1	
4	Statistical Method:	Average	~
5	Signal to Use:	Median-B	~

- 1. Name A name of scan data
- 2. File Type GenePix (gpr) or ProScan (Excel)
- 3. Number of Slides The number of slides used per experiment (in many cases 1 slide per experiment)
- 4. Statistical Method Select one from: Average or Elimination
 - * Elimination method calculates an average value after removing the maximum and the minimum values per glyco-probe
- 5. Signal to Use Select one from: Median-B, Mean-B, Median or Mean (*'B' stands for Background)

6. Data presentation: Glycan Array Data – scan file upload

After selecting the pre-saved array layout and glycan binding sample tested, users can upload the scan file(s).

Slide Slide 1	File Name	File Type	Scan Power(s)	Flourophore (select one) Jpload Files
	Alexa slide 1 set	GenePix	85.0	Alexa 647	
	Alexa slide 1 set	GenePix	90.0	Alexa 647	
	Alexa slide 1 set	GenePix	100.0	Alexa 647	
	Cy3 slide 1 sets	GenePix	100.0	Cyanine 3	/
				Alexa 647 Cyanine 3 Cyanine 5	
			< Back	Next > Finish	Cancel

Select the flourophore used if it is recorded in the scanned file

	Hum	n Adapa	virus 52 SEK, Human Aden	avvinus 52 SEK S?				(4)				- 8
	laster T	able	virus 32 SFR-Human Aden						Filter Section			^
	Fluoro	ophore 🛛	Alexa 647 🗸 Scan Power	r 85.0 - Statistical Method Average - Signal T	Гуре Median-B ∨	Collapse (across bl	ocks) 🗌 Show Negat	tive? Recalculate	Add/Remove Filt	ers		(3)
	Total I	Number (Of Items: 128						# Antenna	∼ Add Ren	nove	
1				Probe Information			fmol/spot	- 5.0	Filter	Description Inclu	u Selection	1
	-/	Probe Id	Probe Name	Structure	Value	SD	Value	SD				
	1	1018	P8-1 (GTP 4N(2,3)-4A+2R+F)	$\begin{array}{c} \bullet u 3 \hline p 4 \hline p \hline p 4$	252.0	80.6	184.5	304.8	Apply Filter R	leset filters		
	2 1016 P6-1 (GTP 4N(2,3)-4A+F)				297.5	154.9	139.0	162.6	Sorter Section Add/Remove Sor 5.0 fmol/spot Sorter	orter Section Add/Remove Sorters 5.0 fmol/spot Sorter Description Sort		
									Sia linkage	Select a sialic acid (ter	minal) linka	Asc
	<							>	Neu5Ac 5.0 fmol/spot	Number of Neu5Ac res	sidues fmol/spot	Desc Desc
0	erview	Master	Table 🛛									
	Huma	an Adenov	virus 52 SFK-Human Aden	novirus 52 SFK - 15.0 fmol/spot1 🕴								- 8
Ι,					Humar	Adenovirus 52	2 SFK					(5)
Elitoreccence Intensity	1 11 21 31 41 51 61 71 81 91 101 111 121											
					Gly	can Probes						

	June -	n Adapa	views 52 SEK Human Adam	52 SEV 52				(4)				- 8
Ma	ster Ta	able	virus 52 SFK-Human Aden						Filter Section			^
F	luoro	phore 🛛	Alexa 647 🗸 Scan Power	85.0 V Statistical Method Average V Signal T	ſype Median-B ∨	Collapse (across bl	ocks) 🗌 Show Negat	tive? Recalculate	Add/Remove Filter	s	(3	ה
T	Total N	Number C	Of Items: 128						# Antenna	 ✓ Add Rem 	ove	
(2)			Probe Information 4	fmol/sp	ot - 2.0 🔹	fmol/spot	- 5.0	Filter D	escription Inclu	Selection	
	^	Probe Id	Probe Name	Structure	Value	SD	Value	SD				
	1	1018	P8-1 (GTP 4N(2,3)-4A+2R+F)	$\begin{array}{c} \bullet a 3 & \bullet p 4 & \bullet p 3 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 3 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 3 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 3 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 & \bullet p 4 \\ \bullet a 4 & \bullet p 4 \\$	252.0	80.6	184.5	304.8	Apply Filter S	ilter and orter sect	ion	
	2	1016	P6-1 (GTP 4N(2,3)-4A+F)	$\begin{array}{c} \bullet a \xrightarrow{\bullet} g \xrightarrow{\bullet} $	297.5	154.9	139.0	162.6	Sorter Section Add/Remove Sorte 5.0 fmol/spot Sorter	ove		
				♦ ± 3 € β 4 ■					Sia linkage	Select a sialic acid (tern	ninal) linka Asc	
	5							>	5.0 fmol/spot	Number of Neu5Ac res Concentration level5.0	fmol/spot Desc	
Ove	rview	Master	Table 🛛									
<u> </u>	Huma	n Adenov	virus 52 SFK-Human Aden	ovirus 52 SFK - 15.0 fmol/spot1 🙁	Humar	Adenovirus 52	Filter	/ Sorter				
30000 20000 10000 1 11 21 31 41 51 61 71						 Number of specific monosaccharide Backbone type (e.g. N-/O- glycans Linkage (e.g. Sialyl) Motif (e.g. Le^x, Le^a) 						
		Glycan Probes										

111		denovirus 52 SE		avinus 57 CEV S2				(4)	Tool bu	ttons —	
Mast	er Table	e	-K-Human Aden	(1)				iii 🗄 🖾	Filter Section		^
Flu	oropho	ore Alexa 647	✓ Scan Power	85.0 V Statistical Method Average V Sign	al Type 🛛 Median-B 🗸	Collapse (across b	locks) 🗌 Show Neg	ative? Recalculate	Add/Remove Filte	rs	(3)
Total Number Of Items: 128 # Antenna											move
(2)		Probe Information			◀ fmol/sp	ot - 2.0	fmol/spc	ot - 5.0	Filter	Description Inc	lu Selection
	Pro	obe Id Pro	obe Name	Structure	Value	SD	Value	SD			
1	L 1	1018 P{ 4N(2,3	8-1 (GTP 3)-4A+2R+F)	$\begin{array}{c} \bullet & a \searrow \bigcirc p + i & p \searrow \bigcirc p + i & p & a & a & a & a & a & a & a & a & a$	252.0	80.6	184.5	304.8	Apply Filter Re	set filters	
2	2 1016 P6-1 (GTP 4N(2,3)-4A+F)			297.5	154.9	139.0	162.6	Sorter Section Add/Remove Sort 5.0 fmol/spot Sorter	ers V Add Re Description	move Sort Or	
				•					Sia linkage	Select a sialic acid (te	rminal) linka Asc
								~	Neu5Ac	Number of Neu5Ac r	esidues Desc
Overv	iew M	laster Table 🖾							5.0 fmol/spot	Concentration levels.	Utmol/spot Desc
ដដ៍ អា	iman A	denovirus 52 SF		ovirus 52 SFK - [5.0 fmol/spot]							
<u>A</u>					Human	Adenovirus 5	2 SFK	T			(5)
ence Intens	0000 0000				Histo	<mark>gram vi</mark>	<mark>ew</mark>				
Fluoresci	0000 -									İ.	5.0 fmol/spot
	<1	1	11	21 31 41	51 61 Chr	71	81	91	101 11	1 121	

Monosaccharides and Motifs for filtering and sorting

- 78 types of monosaccharides
- 72 motifs
- Acidic
- Number of branch
- Number of monosaccharides
- Terminal linkage (e.g. Neu5Ac α2,3 terminal)

Name		Acidic
Fuc (Fucose)		
Gal (Galactose)	\bigcirc	
GalNAc (N-acetyl-galactosamine)		
Glc (Glucose)	\bigcirc	
GlcA (Glucuronic acid)	\diamondsuit	\checkmark
GlcNAc (N-acetyl-gluctosamine)		
IdoA (Iduronic acid)	\diamondsuit	\checkmark
Kdo (3-deoxy-manno-oculosonic acid)	\bigcirc	\checkmark
Man (Mannose)		
Neu5Ac (N-acetylneuraminic acid)	\diamondsuit	\checkmark
Neu5Gc (N-glycolylneuraminic acid)	\diamond	\checkmark
Kdn (3-deoxy-glycerol-galacto-nonulosonic acid)		\checkmark
Ara (Arabinose)		
Rha (Rhamnose)		
Xyl (Xylose)		
Phosphate		\checkmark
Sulphate		\checkmark

6. Data presentation: Create heatmaps using the comparing tool

Tools in CarbArrayART

Data sharing / publication

Data sharing with collaborators: Data export as Project(s) and Reports

Data export: Word file

AutoSav	re 💽 🗄 🖓 🖑 🕏	y × A⁄y × ⇒ Human Adenovirus 52 sh • Saved	d 🗸 🔎 Akune, Yukie 🙀 🖻	
ile	Home Insert Draw	Design Layout References Mailings	Review View Help Picture Form	
aste → ↓	Calibri (Body) B $I \cup \neg ab x_2 \rightarrow A$ $A \sim A \sim A \rightarrow Aa \sim$ Font	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	g Dictate Sensitivity Editor Reuse Files Voice Sensitivity Editor Reuse Files	
1 • • •	6	· 4 · 1 · 5 · 1 · 6 · 1 · 7 · 1 · 8 · 1 · 9 · 1 · 10		
	ComponentI		Experiment Graph	
	Name:	Human Adenovirus 52 short fiber kno	Name: Human Adenovirus 52 short fiber knob	
	Category: Sample Info	rmation	Date Created: Tue Aug 20 10:31:00 BST 2019	
+	<u>+</u>			
	Descriptor/Descriptor	r Value		
	Group		Wetting & Blocking	
	Sample type	Recombinant	Overlay Pre-complexation Human Adenovirus 52 short fiber	
	Hazardous	no	Washing	
	Database Entry		Fluorescent reagent Created By:	
	ID	6G47	Description: Pre-treatment of the microarray slide before sample overlay	
			washing ↓	
	Database name	PDB	Final Wash Parameter/Parameter Group Value	Uni
	ID URI	http://www.rcsb.org/pdb/explore/exp	Drying Wetting	
	Database URI	http://www.rcsb.org/	Ruffer composition Hones buffered coline (5mM Hones pH 7.4, 150mM	
	Тад		NaCl, 5mM CaCl2)	
	Name	His-tag (polyhistidine or His6)	Image analysis Time	sec
			hAd52 sfk-Human Adenovirus 52	
			Name 0.3% (v/v) Blocker Casein (Pierce), 0.3% (w/v) bovine serum albumin (Sigma A8577)	
			Source	

User's manual and video tutorials

http://carbarrayart.org

6. CarbArrayART: Front page

User's manual and video tutorials

http://carbarrayart.org

Future direction: CarbArrayART as a vehicle for transfer of the data to and from the repository

Acknowledgements

Our research in the Glycosciences Lab has been supported by Wellcome Trust, NIH Common Fund 1U01GM125267 - 01, March of Dimes and Medical Research Council

- **ICL Glycosciences Laboratory**
- Ten Feizi
- Yan Liu
- Wengang Chai
- Virginia Tajadura-Ortega Antonio Di Maio

wellcometrust

Supported by

• Jin Yu

Medical Research Council

• Jodie Abrahams

Complex Carbohydrate Research Center

- René Ranzinger
- Sena Arpinar •

- Angelina Palma (NOVA University of Lisbon / ICL)
- Lisete M. Silva (University of Aveiro / ICL)

Thank you very much!

http://carbarrayart.org

For any query: y.akune@imperial.ac.uk

The next talk will be ...

27th February 2023 10AM (EST)

Dr. Akul Y Mehta

National Center for Functional Glycomics

Title: Using GLAD for exploratory glycan microarray data analysis and visualization