The CAZy database, a tool for enzyme discovery

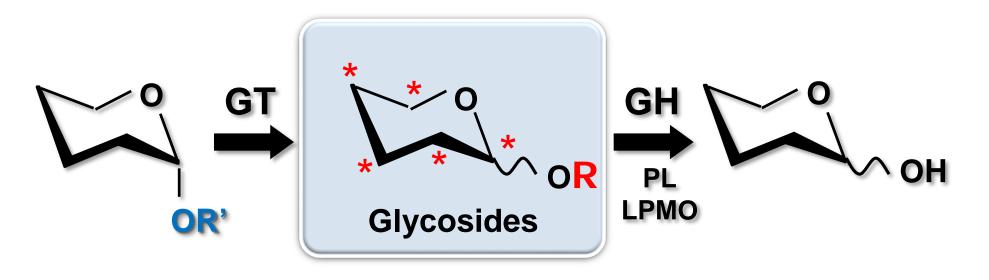
Bernard Henrissat

Lab: Architecture et Fonction des Macromolécules Biologiques

CNRS and Aix-Marseille University, Marseille, France

Carbohydrates

- Not directly encoded by DNA
- interesting when attached to each other (glycans)
- amazing stereochemical diversity despite similar/boring composition
- hugely abundant (photosynthesis), source of carbon for practically all living organisms
- large applied interest : wood, pulp & paper, agriculture, food, feed, drinks, phytopathogens & biocontrol, biofuels & green chemistry, biotechnology, health & medicine, (mal)nutrition, etc

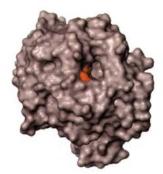


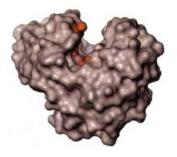
For many people the only exciting forms of carbohydrates are food related

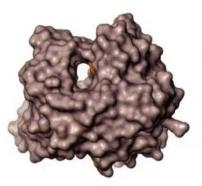
My work is to explore the link between carbohydrates and CAZyme sequences

Breaking a sugar code : to realize the potential offered by genomics, we need to establish ways to accurately predict specificity of carbohydrate-active enzymes from their amino acid sequences

Carbohydrates (continued)


- Virtually any molecule of life can be glycosylated at some stage (lipids, nucleic acids, antibiotics, steroids & hormones, proteins ... and of course sugars themselves)
- Many ways to link sugars together : there is an **astronomical number** of oligo- and polysaccharide structures in Nature
- Consequence : there is an **enormous diversity** of CAZymes


 The stereochemical features of carbohydrates enable proteins to act upon them selectively → immense variety of biological functions



Features of carbohydrate-active enzymes

- To make use of the amazing structural variety of carbohydrates, Nature was able to evolve proteins able to selectively assemble and breakdown glycoconjugates, oligoand polysaccharides
- Selective recognition is achieved by active sites offering a large complementary surface (pocket, cleft, tunnel) which confers the desired specificity
- Many more carbohydrate structures than there are protein folds : acquisition of different specificities on a limited number of ancestral scaffolds has left traces in the aminoacid sequence of CAZymes

Principle : compare amino acid sequences and group enzymes in families of related sequences :

- ◆1991 now: a classification of glycosidases
- 1997 now: glycosyltransferases
- 1999 now: carbohydrate esterases
- 1999 now: carbohydrate-binding modules
- 2010 now: polysaccharide lyases
- 2013 now: auxiliary activities (redox enzymes)

CAZy : the Carbohydrate-active enzymes database (www.cazy.org)

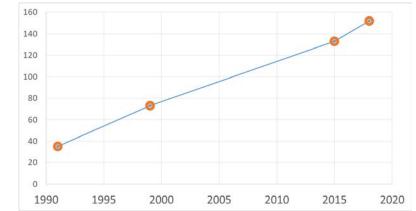
CAZY

- Families of enzymes and protein domains that assemble, cut and bind complex carbohydrates
- Launched Sept 1998 Updates every 3-4 weeks

→ CAZy will be 20 years old this year !

- Underlying classification work started in 1989-1991
- GHs: 1991; GTs: 1997; CEs, PLs and CBMs: 1999; AA: 2013
- Total of ~400 families*
- Data source : NCBI daily releases of GenBank (amino acid sequences)

- Analysis using BLASTp & home made HMMs, plus_human curation
- Public side* (>9,000 bacterial, ~300 archaeal, >200 eukaryotic genomes)
- Private area for collaborations on draft genomes (~1,500 bacterial, ~1,500 eukaryotic genomes including ~1,400 fungi)
- CAZyme families have an extremely rich functional information content
- CAZymes inform on the lifestyle and carbon utilization pathways of organisms



CAZy : a knowledge base serving the Glycobiology community

- For CAZymes, activity means substrate and/or product specificity
- For each family CAZy gives (and updates !) the known activities, the nature of the catalytic mechanism and of the catalytic machinery
- Statistics on the family
- Listings for all organisms, or just Archaea or Bacteria or Eukaryota
- Listing of the enzymes with known 3-D structures and display of the ligand information
- Listing of those enzymes that have been experimentally characterized
- For some families : breakdown in **subfamilies**

- CAZy is strongly engaged in Glycobiology and Microbiology research
- CAZy is operated by a small group of dedicated people with deep knowledge of carbohydrates and their enzymes as their research tool
- CAZy is not directly funded to perform any of its activities
- Community cooperates with CAZy to alert on new activities, and to request new family numbers
- Complemented by CAZypedia, a communitydriven encyclopedic resource on carbohydrateactive enzymes (www.cazypedia.org)

Number of GH families

1	11		31		51		71	81	91	101	111	121	131	141	151
2	12	22	32	42	52	62	72	82	92	102	112	122	132	142	152
3	13	23	33	43	53	63	73	83	93	103	113	123	133	143	
4	14	24	34	44	54	64	74	84	94	104	114	124	134	144	
5	15	25	35	45	55	65	75	85	95	105	115	125	135	145	
6	16	26	36	46	56	66	76	86	96	106	116	126	136	146	
7	17	27	37	47	57	67	77	87	97	107	117	127	137	147	
8	18	28	38	48	58	68	78	88	98	108	118	128	138	148	
9	19	29	39	49	59		79	89	99	109	119	129	139	149	
10	20	30		50		70	80	90	100	110	120	130	140	150	
															-

1991 1999

2015

2018

More than 4 times more families known in 2018 than in 1991: the share of carbohydrate-active enzymes in genomes is growing steadily !

The big challenge: functional predictions

- Many researchers utilize CAZy family membership as a functional prediction
- But most of our **families group together different EC numbers** (sometimes more than 20 ... and all activities are not known)
- Capture of functional information:
 - Nowadays biochemists no longer use EC numbers
 - EC numbers : what are they ? What were they made for ? Are they adapted to Bioinformatics ?
- Naming system(s) for protein families and the propagation of the functional information by sequence similarity

How are genes annotated by genome annotators ? How are functions predicted ?

- By comparing the sequences of the putative proteins to all proteins/profiles in a sequence or a profile database at a given time
- Essentially by inspection of the top **BLAST** hits or the top scoring family **HMM**
- Mostly by different people, using different criteria, different methods or different thresholds
- Whilst this is perhaps not a problem for a number of proteins, inspection of literature shows that there are serious problems with the annotation of CAZymes

Features of the CAZy families

- Conserved molecular mechanism
- Conserved catalytic residues
- Conserved 3-D fold

Predictive

- Varying substrate / product specificity
 Variable modular structure

Two Volvariella volvacea genomes, two teams, two methods, different results

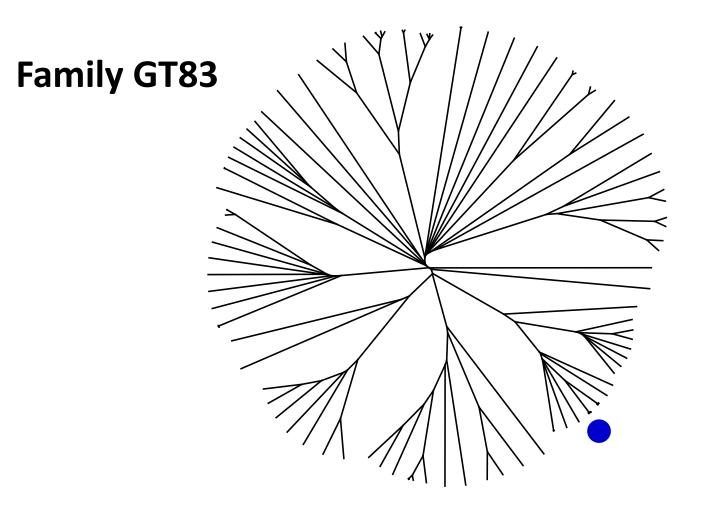
Chen et al. PLoS One. 2013; 8(3): e58780

- Published: March 12, 2013
- CAZymes predicted with CAT
- « ranks 7th among 15 fungi with sequenced genomes »
- « the composition of glycoside hydrolases in *V. volcacea* is dramatically different from other basidiomycetes »

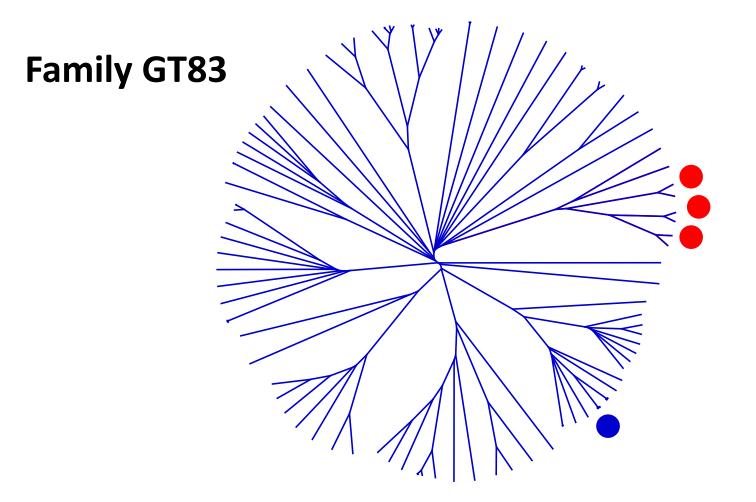
Bao et al. PLoS One. 2013; 8(3): e58294

- Published: March 19, 2013
- CAZymes predicted with dbCAN
- « ranks 3rd among 5 basidiomycetes »
- « the genome of *V. volvacea* has many genes that code for enzymes which are involved in the degradation of cellulose, hemicellulose, and pectin »

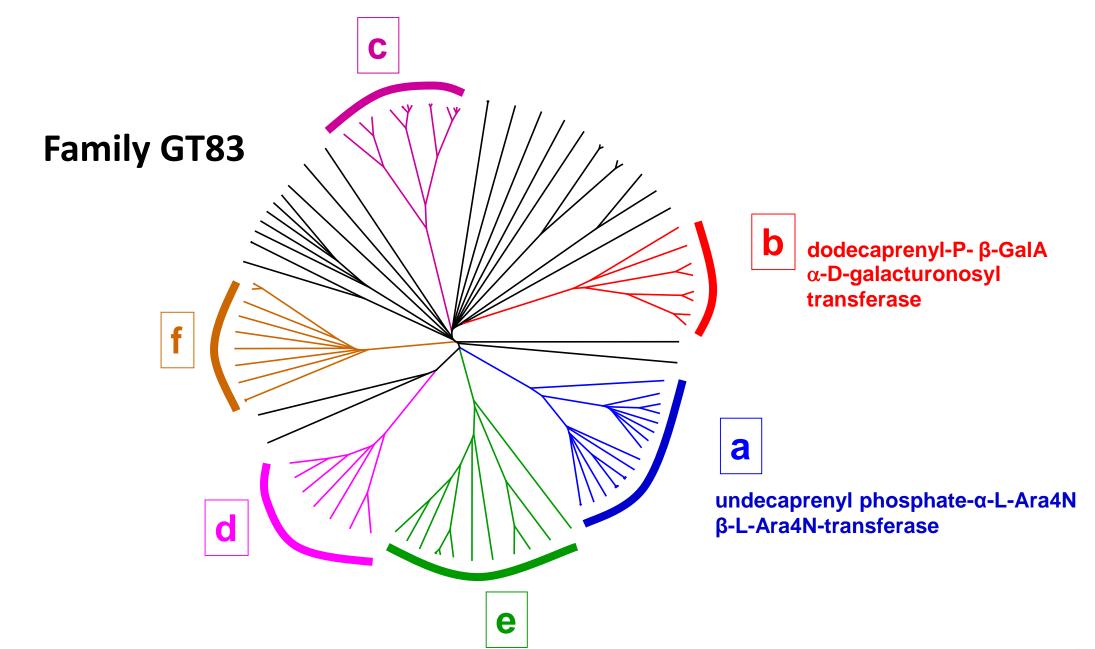
Comparison of the GH family profiles


	Chen	Bao	
GH1	3	3	
GH2		2	
GH3	12	11	
GH5	6	17	contains cellulases
GH6	4		contains cellulases
GH7	11	14	contains cellulases
GH9	1	1	
GH10	20	19	
GH12	2	2	
GH13	9	7	
GH15	3	5	
GH16	2	21	
GH17	1	3	
GH18	12	11	
GH20	1	1	
GH23	1	1	
GH24	1		
GH25	3		
GH27	2	1	
GH28	3	3	
GH30	2	2	
GH31	6	6	
GH35	4	4	

	Chen	Bao
GH37	1	2
GH38	1	1
GH43	12	8
GH47	7	7
GH51	3	3
GH53	1	1
GH55		5
GH61	31	30
GH63	1	1
GH71	2	4
GH72	1	1
GH74		1
GH79		5
GH85	3	
GH88	5	1
GH92	4	
GH95		2
GH105		2
GH109	10	
GH115		3
GH125		1
GH128		4
Total	191	216


Problems with functional prediction

 undecaprenyl phosphate-L-Ara4N:4-amino-4-deoxyβ-L-arabinosyltransferase (EC 2.4.2.43)



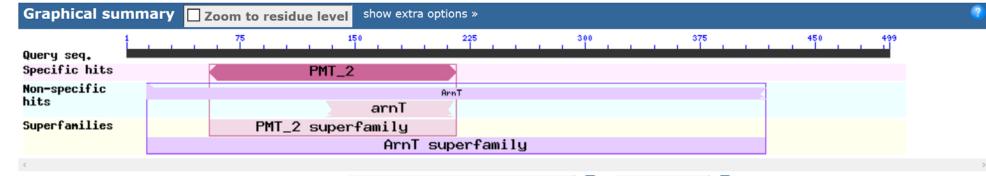
C. Raetz, et al. (2006) : dodecaprenyl phosphate-β-galacturonic acid: Should all these be appotated as a capino syltransferases ?

 undecaprenyl phosphate-L-Ara4N:4-amino-4-deoxyβ-L-arabinosyltransferase (EC 2.4.2.43)

A family of inverting glycosyltransferases using nucleotide monophosphosugar donors

NCBI nr BLASTp with GT83 dodecaprenyl-P-GalA: LPS core α-D-galacturonosyltransferase from *Rhizobium leguminosarum* (GenBank <u>ABC02169.1</u>)

Annotation	in top 1000:
hypothetical protein	545
membrane protein	113
glycosyl transferase	73
glycosyltransferase family 39 protein	71
glycosyl transferase family 39	65
phospholipid carrier-dependent glycosyltransferase	31
glycosyltransferase	29
4-amino-4-deoxy-L-arabinose transferase	17
PMT family glycosyltransferase, 4-amino-4-deoxy-L-arabinose transferase	17
Dolichyl-phosphate-mannose-protein mannosyltransferase	16
PMT family glycosyltransferase protein	6
glycosyl transferase family protein	3
Lipopolysaccharide core galacturonosyltransferase RgtA	3
PMT family glycosyltransferase	2
putative membrane protein	2
CAZy families GT83 protein	1
conserved membrane hypothetical protein	1
dolichol monophosphate mannose synthase	1
Glycosyl transferase GT83	1
glycosyltransferase protein	1
PMT family glycosyltransferase 4-amino-4-deoxy-L-arabinose transferase	1
transmembrane protein	1


• Search done on 23 Feb 2018

- 22 different annotations in top 1000 results (all significant)
- 3 of 1000 report the correct activity
- But not the sequence I started with
- Correct functional information not properly captured or displayed (not in the top Blast results)
- Wrong functional information tends to percolate more efficiently (Murphy's Law)
- Large diversity of annotation in UniProt
- Swiss-Prot is good now
- No EC number available for this activity

Protein families servers

Conserved domains database

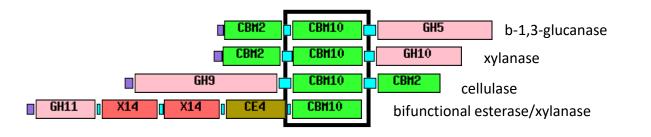
Search for similar domain architectures

Refine search

List of domain hits						
Name	Accession	Description	Interval	E-value		
[+] ArnT	COG1807	4-amino-4-deoxy-L-arabinose transferase or related glycosyltransferase of PMT family [Cell	14-418	1.45e-25		
[+] PMT_2	pfam13231	Dolichyl-phosphate-mannose-protein mannosyltransferase; This family contains members that are	55-216	1.68e-15		
[+] arnT	PRK13279	4-amino-4-deoxy-L-arabinose transferase; Provisional	131-214	2.62e-03		

Family: *PMT_2* (PF13231)

Summary	Summary: Dolichyl-phosphate-mannose-protein mannosyltransferase						
Domain organisation	Pfam includes annotations and additional family information from a range of different sources. These sources can be accessed						
Clan	Prain includes annotations and additional ramity information from a range of different sources. These sources can be accessed						
Alignments	No Wikipedia article Pfam InterPro						
HMM logo	This tab holds the annotation information that is stored in the Pfam database. As we move to using Wikipedia as our main sou						
Trees							
Curation & model	Dolichyl-phosphate-mannose-protein mannosyltransferase Provide feedback						
Species	This family contains members that are not captured by <u>PF02366</u> .						
Interactions	Internal database links						
Structures							
Jump to 🔍	SCOOP: Glyco transf 22 GT87 Mannosyl trans Mannosyl trans2 Mannosyl trans4 PIG-U PMT PTPS related STT3						
enter ID/acc Go	Similarity to PfamA PMT STT3 Glyco transf 22 DUF2079 PTPS related using HHSearch: DUF2723						


Where are the problems coming from ?

- Genomes annotated against what is found in general databases at the moment they are annotated.
- Subsequent progress in functional biochemistry is rarely (never) propagated into "old" genomes. These old, obsolete, genomes then serve for the annotation of the new ones ...
- Errors in general DBs hard to correct
- Modular organization of CAZymes

Modularity of CAZymes creates problems for functional annotation

 Best BLAST hit can be on a non catalytic module, making functional prediction hazardous

• What is the function of the X122-containing protein ?

Other problems

- Human factor (i): tendancy to name families based on the function of the first discovered member
- Human factor (ii): it seems that there are as many family definitions and naming conventions as there are scientists
- Lots of putative domains have function-suggesting names (*such as BACON domain: Bacteroidetes-Associated Carbohydrate-binding Often N-terminal*) based on indirect inferrence and no experimental support
- EC numbers / functions assigned to sequences without biochemistry

Problems with the EC numbers

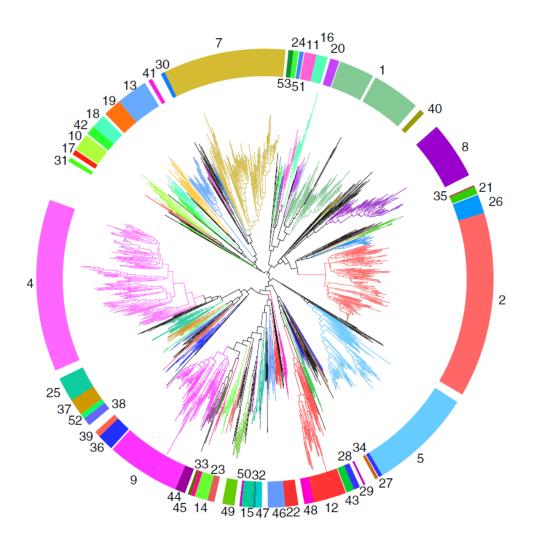
- By definition the EC numbers should be attributed only after biochemical characterization
- Unfortunately general databases and genome annotators assign EC numbers based on sequence similarity
- For CAZymes, similarity is frequently too distant to ensure reliability when passing an EC number by homology
- General databases polluted by wrong EC numbers and/or wrong function-suggesting names

How do we cope with these problems in the CAZy database ?

- EC number placed only when we have documented evidence for particular activity (literature scans + <u>community of scientists</u>)
- We do not transmit any functional information by similarity

Practical issues & key challenges

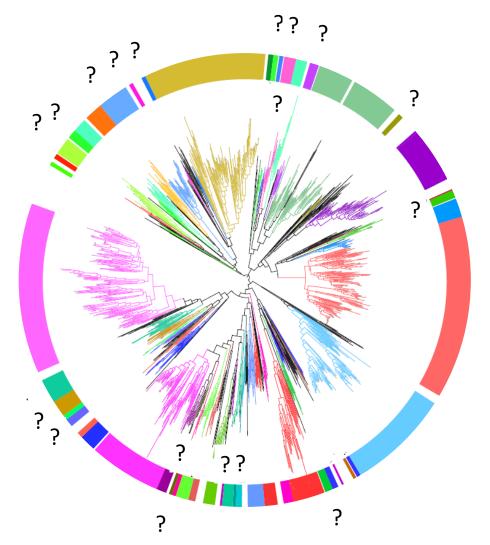
- Capture of functional information:
 - Revise the EC number system so that it captures some essential features present in protein families (molecular mechanism, catalytic machinery etc, which can become predictible)
 - Create a world initiative demanding (i) immediately a simple way to deposit biochemical characterization dara and (ii) later a more general form (if ever a consensus can be found)
 - A database of experimentally characterized enzymes would certainly have great value



Practical issues & key challenges (continued)

- Many more functions than protein folds: stop using first function to name a family as this name will be passed by similarity even remote (especially when the profile is loose to maximize coverage)
- The full spectrum of activities in a family is rarely known, some families have only one or a handful characterized members. We certainly know the pitfalls and limitations to function prediction, but those who use our databases do not
- one cannot use the exact same rules (thresholds) in different families (variable functional sampling, widely different lengths of the functional modules)
- We must avoid placing functional predictions in sequence databases
- Functional predictions should include explicit integration of the distance between query and a functionally-characterized sequence

Subfamilies are currently our best way *en route* to accurate functional prediction



Family GH5

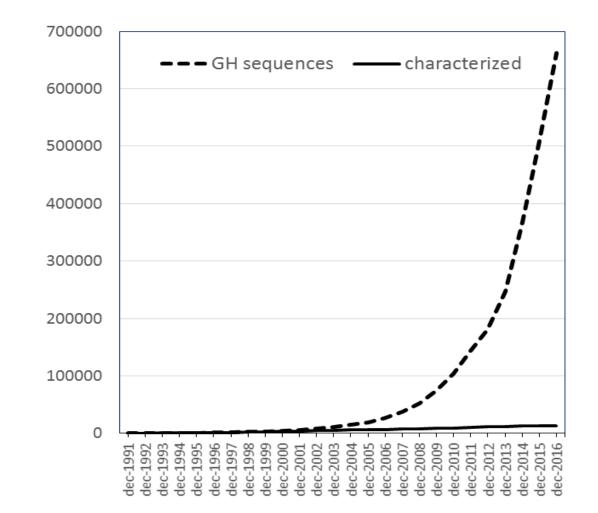
- >20 different EC numbers
- 51 subfamilies defined
- 31 subfamilies with known activities
- subfamilies show limited functional variations (→ functional prediction)

Subfamilies are currently our best way *en route* to accurate functional prediction

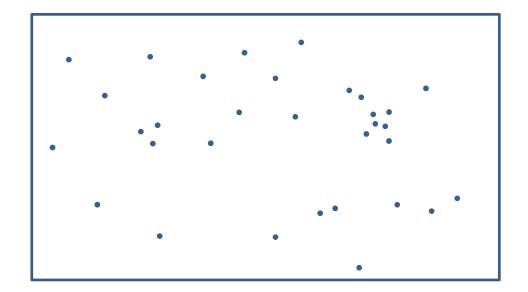
Family GH5

- >20 different EC numbers
- 51 subfamilies defined
- 31 subfamilies with known activities
- subfamilies show limited functional variations (→ improved functional prediction)
- 20 subfamilies with no EC number : →potential for discovery (or redundancy)

How can **novel** enzymes be discovered ?

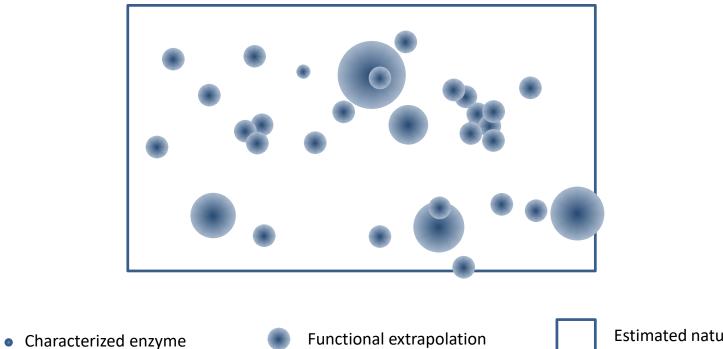

Define a strategy :

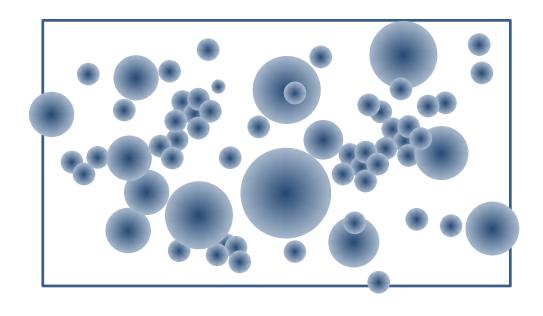
- chance (we must be prepared, but we can't count on it; not developped here !)
- screen for something you are looking for
- omics: secretomics, transcriptomics, genomics
- artificial enzymes; directed evolution towards new reactions
- bioinformatics (guilt by association; collaborative networks of enzymes)
- A systematic exploration of nature's sequence space

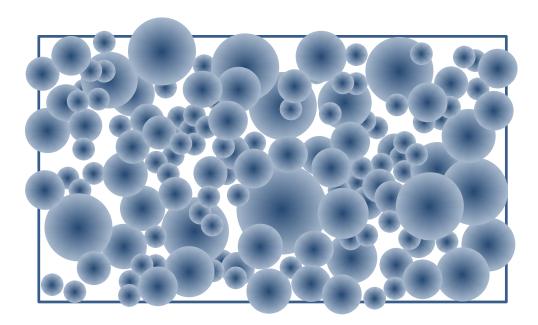


Growth of enzyme sequence data

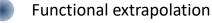
- Doubling time : 2 years
- Growth of biochemistry linear
- A Blast search with a protein sequence will essentially yield sequences that have not been characterized
- Immense sequence diversity to explore to make discoveries or to make products (in addition to large redundancy)

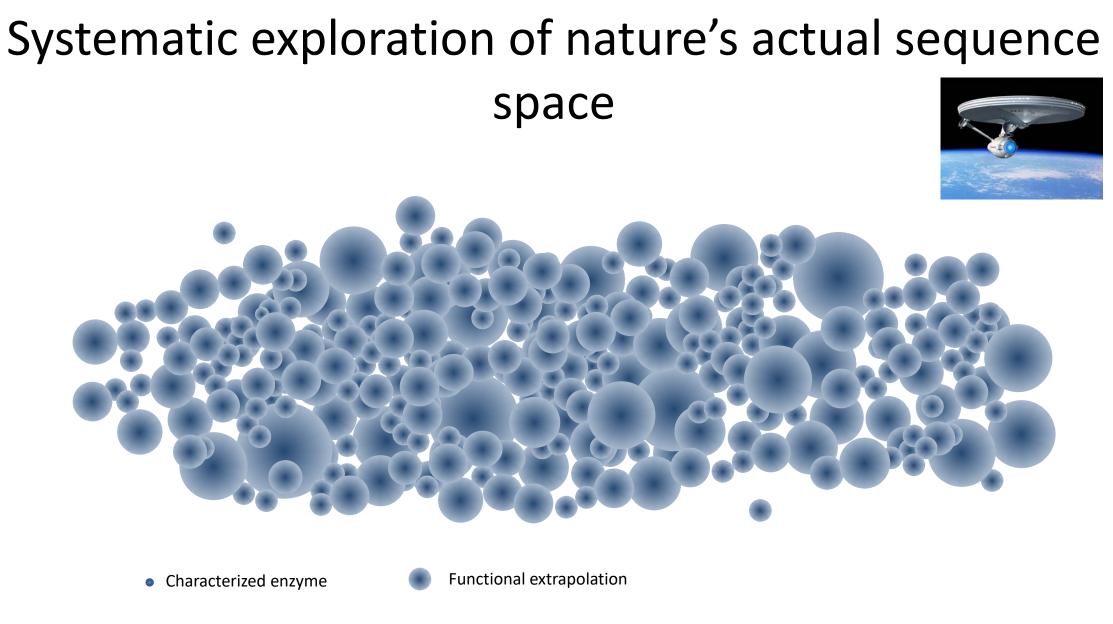



• Characterized enzyme



Characterized enzyme


Functional extrapolation



• Characterized enzyme

Actual space probably larger than we think

Nature's sequence diversity provides predictive power

Acknowledgments

AFMB lab Marseille

- Elodie Drula (bioinformatics)
- Marie-Line Garron (crystallography)
- Matthieu Hainaut (genome curation)
- Pascal Lapébie (PUL analyses)
- Nicolas Lenfant (bioinformatics)
- Vincent Lombard (CAZy database)
- Nicolas Terrapon (PUL analyses)
- Renaud Vincentelli (protein production)

Postdoc wanted

PUL exploration

- **David Bolam** (Newcastle University)
- Harry J. Gilbert (Newcastle University)

Polysaccharide screening

• William Helbert (CNRS, Grenoble)

